A ³⁵Cl NQR Study on Cs₂[Au^ICl₂][Au^{III}Cl₄]*

A. Ishikawa, M. Kurasawa, S. Kitahara, A. Sasane, N. Kojima^a, and R. Ikeda^b

Department of Chemistry, Faculty of Science, Shinshu University, Matsumoto 390, Japan

^a Department of Pure and Applied Sciences, College of Arts and Sciences, The University of Tokyo, Tokyo 153, Japan

b Department of Chemistry, University of Tsukuba, Tsukuba 305, Japan

Z. Naturforsch. 53a, 590-594 (1998); received December 31, 1997

A pair of 35 Cl NQR spin echo signals has been observed for the mixed valence complex Cs₂[Au¹Cl₂] [Au¹llCl₄] between 77 and 243 K. At 77 K, two resonance lines with the half widths $\Delta v_Q \sim 50$ kHz were located at $v_{Q1} = 17.28$ MHz for the Au¹-Cl chlorine and at $v_{Q2} = 27.10$ MHz for the Au¹¹-Cl chlorine in accordance with the crystal structure. The chlorine ionic characters of the Au¹-Cl and Au¹¹¹-Cl bonds are estimated as 0.63 and 0.42, respectively. The central gold atom carries a fractional protonic charge of 0.26 in [Au¹Cl₂] and 0.68 in [Au¹¹¹Cl₄]. The charge distributions in the complex anions differ insignificantly from those in the isolated [AuCl₂] and [AuCl₄] for ordinary complexes, indicating that the charge transfer interactions between the anions are weak in the mixed valence complex. The observed linear temperature dependencies of v_Q and $\log T_{1Q}$ are well explained by the lattice vibration. When the temperature was increased from 77 K, the resonance lines became gradually weak without changing Δv_Q and immeasurable above 215 K. ESR spectra taken at various temperatures revealed the presence of paramagnetic sites of ca. 5×10^{20} mol⁻¹ arising from Au(II). The small but finite concentration of Au(II) or some other reason should be responsible for the fade out phenomenon and the large Δv_Q observed.

Key words: ³⁵Cl NQR Frequency, ³⁵Cl NQR Spin-lattice Relaxation, Mixed Valence Gold Complex, Charge Transfer Interaction, ESR.

Reprint requests to Prof. A. Sasane; Fax: +81-263-37-2559.